
On Finding finite differences *

Leonhard Euler

§44 We explained at the beginning, how from the finite differences of the
functions their differentials can easily be found, and even derived the prin-
ciple of differentials from this source. For, if the differences, if they were
assumed to be finite, vanish and go over into zero, the differentials result; and
because in this case many and often innumerable terms, which constitute the
finite difference, are neglected, the differentials can be found a lot easier and
expressed both more conveniently and succinctly than the finite differences.
And therefore there seems to be no way to ascend from differentials to finite
differences. Nevertheless, by the method we will use here one will be able to
define the finite differences from the differentials of all orders of any function.

§45 Let y be any function of x; because this function having put x + dx
instead of x goes over into y + dy, if one puts x + dx instead of x again, the
value y + dy will be augmented by its differential dy + ddy and it will be
= y + 2dy + ddy which value therefore corresponds to x + 2dx put instead
for x. In the same way, if we assume that x is continuously augmented by its
differential dx that it successively takes the values x + dx, x + 2dx, x + 3dx,
x + 4dx etc., the corresponding values of y will be those seen in the following
table.

*Original title: “ De Inventione Differentiarum Finitarum“, first published as part of the book
„Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, 1755“,
reprinted in in „Opera Omnia: Series 1, Volume 10, pp. 256 - 275 “, Eneström-Number E212,
translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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Values of Corresponding Values of the Function

x

x + dx

x +2dx

x + 3dx

x + 4dx

x + 5dx

x + 6dx

etc.

y

y + dy

y + 2dy + ddy

y + 3dy + 3ddy + d3y

y + 4dy + 6ddy + 4d3y + d4y

y + 5dy + 10ddy + 10d3y + 5d4y + d5y

y + 6dy + 15ddy + 20d3y + 15d4y + 6d5y + d6y

etc.

§46 Therefore, if in general x goes over into x + ndx, the function y will
obtain this form

y+
n
1

dy+
n(n − 1)

1 · 2
ddy+

n(n − 1)(n − 2)
1 · 2 · 3

d3y+
n(n − 1)(n − 2)(n − 3)

1 · 2 · 3 · 4
d4y+ etc.;

even though in this expression any term is infinitely smaller than its preceding
term, we nevertheless did not omit any term, so that this formula can be used
for the present task. For, we will assume an infinitely large number for n, and
since we know that it can happen that the product of an infinitely large and
an infinitely small quantity becomes equal to a finite quantity, the second term
can certainly become homogeneous to the second term or the quantity ndy
can represent a finite quantity. For the same reason the third term n(n−1)

1·2 ddy,
even though ddy is infinitely smaller than ddy, can nevertheless, because the
one factor n(n−1)

1·2 is infinitely larger than n, also express a finite quantity; and
so having put n to be an infinite number, it is not possible to neglect any term
of that expression.

§47 But having put n to be an infinite number, by whatever finite number it
is either augmented or diminished, the resulting number will have the ratio of
1 to n and hence one can write the number n for the single factors n − 1, n − 2,
n − 3, n − 4 etc. everywhere. For, because it is n(n−1)

1·2 ddy = 1
2 nnddy − 1

2 nddy,
the first term 1

2 nnddy will have the same ratio to the second 1
2 nddy as n to 1

and so it will vanish with respect to the latter; therefore, one will be able to
write 1

2 nn instead of n(n−1)
1·2 . In like manner, the coefficient of the fourth term
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n(n−1)(n−3)
1·2·3 can be contracted to n3

6 and in the same manner one can neglect
the numbers, by which n is diminished in the factors, in the following. But
having done this, the function y, if in one writes x + ndx instead of x while n
is an infinite number, will obtain the following value

y +
ndy

1
+

nnddy
1 · 2

+
n3d3y
1 · 2 · 3

+
n4d4y

1 · 2 · 3 · 4
+

n5d5y
1 · 2 · 3 · 4 · 5

+ etc.

§48 Therefore, because having assumed n as infinitely large number, even
though dx is infinitely small, the product ndx can express a finite quantity,
let us put ndx = ω that it is n = ω

dx ; n will certainly be an infinite number,
because it is the quotient resulting from a division of the finite quantity ω by
the infinitely small dx. But having used this value instead of n, if the variable
quantity x is augmented by a certain quantity ω or if one puts x + ω instead
of x, then a certain function y of it will go over into this form

y +
ωdy
1dx

+
ω2ddy
1 · 2dx2 +

ω3d3y
1 · 2 · 3dx3 +

ω4d4y
1 · 2 · 3 · 4dx4 + etc.,

the single terms of which expression can be found by iterated differentiation
of y. For, because y is a function x, we showed above that these functions dy

dx ,
ddy
dx2 , d3

dx3 etc. all exhibit finite quantities.

§49 Therefore, because, while the variable quantity x is assumed to be
augmented by the finite quantity ω, any function y of it is augmented by its
first difference, which we indicated by ∆y above where it was ω = ∆x, one
will be able to find the difference of y by continued differentiation; for, it will
be

∆y =
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.

or

∆y =
∆x
1

· ∆y
dx

+
∆x2

2
· ddy

dx2 +
∆x3

6
· d3y

dx3 +
∆x4

24
· d4y

dx4 + etc.

And so the finite difference ∆y is expressed by a progression whose single
terms proceed in powers of ∆x. And hence vice versa it is clear, if the quantity
x is augmented only by an infinitely small quantity, that ∆x goes over into its
differential dx, that all terms vanish with respect to the first and that it will be
∆y = dy; for, having set ∆x = dx the difference, by definition, ∆y goes over
into the differential dy.
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§50 Because, if one puts x + ω instead of x, any function y of it obtains the
following value

y +
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.,

the validity of this expression can checked in examples of such a kind in which
the higher differentials of y finally vanish; for, in these cases the number of
terms of the above expression will become finite.

EXAMPLE 1

Let the value of the expression xx − x, if one puts x + 1 instead of x, be in question.

Put y = xx − x, and because it is assumed that x goes over into x + 1, it will
be ω = 1; now, having taken the differentials, it will be

dy
dx

= 2x − 1,
ddy
dx2 = 2,

d3y
dx3 = 0 etc.

Therefore, the function y = xx − x, having put x + 1 instead of x, will go over
into

xx − x + 1(2x − 1) +
1
2
· 2 = xx + x.

But if in xx − x one actually puts x + 1 instead of x,

xx will go over into xx + 2x + 1

x will go over into + x + 1

so, in total

xx − x will go over into xx + x

EXAMPLE 2

Let the value of the expression x3 + xx + x, if one puts x + 2 instead of x, be in
question.

Put y = x3 + xx + x and it will be ω = 2; now, because it is
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y = x3 + xx + x,

it will be

dy
dx

= 3xx + 2x + 1,
ddy
dx2 = 6x + 2,

d3y
dx3 = 6,

d4y
dx4 = 0 etc.

From these the value of the function y = x3 + xx + x, if one substitutes x + 2
for x, will be the following

x3 + xx + x + 2(3xx + 2x + 1) +
4
2
(6x + 2) +

8
6
· 6 = x3 + 7xx + 17x + 14,

which same function arises, x + 2 is actually substituted for x.

EXAMPLE 3

Let the value of the expression xx+ 3x+ 1, one puts x− 3 instead of x, be in question.

Therefore, it will be ω = −3, and having put

y = xx + 3x + 1

it will be

dy
dx

= 2x + 3,
ddy
dx2 = 2,

d3y
dx3 = 0 etc.,

whence having put x − 3 instead of x the function x2 + 3x + 1 will go over
into

x2 + 3x + 1 − 3
1
(2x + 3) +

9
2
· 2 = x2 − 3x + 1.

§51 If a negative number is taken for ω, one will find the value, which any
function of x obtains, if the quantity x is diminished by the given quantity
ω. Of course, if one puts x − ω instead of x, an arbitrary function y of x will
obtain this value

y − ωdy
dx

+
ω2ddy
2dx2 − ω3d3y

6dx3 +
ω4d4y
24dx4 − etc.,
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whence all variations, the function y can undergo, while the quantity x is
changed anyhow, can be found. But if y was a polynomial function of x, since
one finally gets to vanishing differentials, the varied value will be expressed
by means of a finite expression; but if y was not a function of this kind, the
varied value will be expressed by means of an infinite series, whose sum,
since, if the substitution is actually done, the varied value is easily assigned,
can be exhibited by a finite expression.

§52 But as the first difference was found, so also the following differences
can be exhibited by similar expressions. For, let x successively take the values
x + ω, x + 2ω, x + 3ω, x + 4ω etc. and denote the corresponding values of
y by yI, yII, yIII, yIV etc., as we put in the beginning of this book. Therefore,
since yI, yII, yIII, yIV etc. are the values, which y obtains, if one respectively
writes x + ω, x + 2ω, x + 3ω, x + 4ω etc. instead of y, using the demonstrated
method the values of these ys will be expressed this way:

yI = y +
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.

yII = y +
2ωdy

dx
+

4ω2ddy
2dx2 +

8ω3d3y
6dx3 +

16ω4d4y
24dx4 + etc.

yIII = y +
3ωdy

dx
+

9ω2ddy
2dx2 +

27ω3d3y
6dx3 +

81ω4d4y
24dx4 + etc.

yIV = y +
4ωdy

dx
+

16ω2ddy
2dx2 +

64ω3d3y
6dx3 +

256ω4d4y
24dx4 + etc.

etc.

§53 Therefore, because, if ∆y, ∆2y, ∆3y, ∆4y etc. denote the first, second,
third, fourth etc. differences, it is

∆y = yI − y

∆2y = yII − 2yI + y

∆3y = yIII − 3yII + 3yI − y

∆4y = yIV − 4yIII + 6yII − 4yI + y

etc.,
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these differences will be expressed this way by means of differentials:

∆y =
ωdy
dx

+
ω2ddy

dx2 +
ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.

∆2y =
(22 − 2 · 1)ω2ddy

2dx2 +
(23 − 2 · 1)ω3d3y

6dx3 +
(24 − 2 · 1)ω4d4y

24dx4 + etc.

∆3y =
(33 − 3 · 23 + 3 · 1)ω3d3y

6dx3 +
(34 − 3 · 24 + 3 · 1)ω4d4y

24dx4 + etc.

∆4y =
(44 − 4 · 34 + 6 · 24 − 4 · 1)ω4d4y

24dx4 +
(45 − 4 · 35 + 6 · 25 − 4 · 1)ω5d5y

120dx5 + etc.

etc.

§54 It is immediately clear, of how much use these expressions of differences
are in the doctrine of series and progressions, and we will explain it in
greater detail in the following. Meanwhile, in this chapter we want to consider
use, which immediately follows from this for the understanding of series.
Although usually the indices of the terms of a certain series are assumed to
constitute an arithmetic progression whose difference is 1, for a broader and
easier applicability, let us nevertheless set the difference = ω, such that, if
the general term or that corresponding to the index x, was y, the following
correspond to the indices x +ω, x + 2ω, x + 3ω etc. Therefore, if the following
terms correspond to these indices

x, x + ω, x + 2ω, x + 3ω, x + 4ω etc.

y, P, Q, R, S, etc.

the single terms will be defined from y and its differentials this way:
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P = y +
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.

Q = y +
2ωdy

dx
+

4ω2ddy
2dx2 +

9ω3d3y
6dx3 +

16ω4d4y
24dx4 + etc.

R = y +
3ωdy

dx
+

9ω2ddy
2dx2 +

27ω3d3y
6dx3 +

81ω4d4y
24dx4 + etc.

S = y +
4ωdy

dx
+

16ω2ddy
2dx2 +

64ω3d3y
6dx3 +

256ω4d4y
24dx4 + etc.

T = y +
5ωdy

dx
+

25ω2ddy
2dx2 +

125ω3d3y
6dx3 +

625ω4d4y
24dx4 + etc.

etc.

§55 If these expressions are subtracted from each other, y will not longer
enter the differences and it will be

P − y =
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.

Q − P =
ωdy
dx

+
3ω2ddy

2dx2 +
7ω3d3y

6dx3 +
15ω4d4y

24dx4 + etc.

R − Q =
ωdy
dx

+
5ω2ddy

2dx2 +
19ω3d3y

6dx3 +
65ω4d4y

24dx4 + etc.

S − R =
ωdy
dx

+
7ω2ddy

2dx2 +
37ω3d3y

6dx3 +
175ω4d4y

24dx4 + etc.

T − S =
ωdy
dx

+
9ω2ddy

2dx2 +
61ω3d3y

6dx3 +
369ω4d4y

24dx4 + etc.

etc.

If these expressions are again subtracted from each other, the first differentials
will also cancel each other and it will be
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Q − 2P + y =
2ω2ddy

2dx2 +
6ω3d3y

6dx3 +
14ω4d4y

24dx4 + etc.

R − 2Q + P =
2ω2ddy

2dx2 +
12ω3d3y

6dx3 +
50ω4d4y

24dx4 + etc.

S − 2R + Q =
2ω2ddy

2dx2 +
18ω3d3y

6dx3 +
110ω4d4y

24dx4 + etc.

T − 2S + R =
2ω2ddy

2dx2 +
24ω3d3y

6dx3 +
194ω4d4y

24dx4 + etc.

etc.

Having subtracted them from each other again the second differentials will
also go out of the computation:

R − 3Q + 3P − y =
6ω3d3y

6dx3 +
36ω4d4y

24dx4 + etc.

S − 3R + 3Q − P =
6ω3d3y

6dx3 +
60ω4d4y

24dx4 + etc.

T − 3S + 3R − Q =
6ω3d3y

6dx3 +
84ω4d4y

24dx4 + etc.

etc.

By continuing the subtraction it will be

S − 4R + 6Q − 4P + y =
24ω4d4y

24dx4 + etc.

T − 4S + 6R − 4Q + P =
24ω4d4y

24dx4 + etc.

etc.

and

T − 5S + 10R − 10Q + 5P − y =
120ω5d5y

120dx5 + etc.

etc.
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§56 Therefore, if y was a polynomial function of x, since its higher differenti-
als will finally vanish, by proceeding this way one will finally reach vanishing
expressions. Therefore, because these expressions are differences of y, let us
consider their forms and coefficients more diligently.

y = y

∆y =
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 +

ω5d5y
120dx5 + etc.

∆2y =
ω2ddy

dx2 +
3ω3d3y

3dx3 +
7ω4d4y
3 · 4dx4 +

15ω5d5y
3 · 4 · 5dx5 +

31ω6d6y
3 · 4 · 5 · 6dx6 + etc.

∆3y =
ω3d3y

dx3 +
6ω4d4y

4dx4 +
25ω5d5y
4 · 5dx5 +

90ω6d6y
4 · 5 · 6dx6 +

301ω7d7y
4 · 5 · 6 · 7dx7 + etc.

∆4y =
ω4d4y

dx4 +
10ω5d5y

5dx5 +
65ω6d6y
5 · 6dx6 +

350ω7d7y
5 · 6 · 7dx7 +

1701ω8d8y
5 · 6 · 7 · 8dx8 + etc.

∆5y =
ω5d5y

dx5 +
15ω6d6y

6dx6 +
140ω7d7y
6 · 7dx7 +

1050ω8d8y
6 · 7 · 8dx8 +

6951ω9d9y
6 · 7 · 8 · 9dx9 + etc.

∆6y =
ω6d6y

dx6 +
21ω7d7y

7dx7 +
266ω8d8y
7 · 8dx8 +

2646ω9d9y
7 · 8 · 9dx9 +

22827ω10d10y
7 · 8 · 9 · 10dx10 + etc.

etc.

§57 Let us also consider the same series continued backwards at the same
time, which contains the terms corresponding to the indices x − ω, x − 2ω,
x − 3ω etc.

x − 4ω x − 3ω, x − 2ω, x − ω, x, x + ω, x + 2ω, x + 3ω, x + 4ω etc.

s, r, q, p, y, P, Q, R, S etc.

Therefore, because it is
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p = y − ωdy
dx

+
ω2ddy
2dx2 − ω3d3y

6dx3 +
ω4d4y
24dx4 − etc.

q = y − 2ωdy
dx

+
4ω2ddy

2dx2 − 8ω3d3y
6dx3 +

16ω4d4y
24dx4 − etc.

r = y − 3ωdy
dx

+
9ω2ddy

2dx2 − 27ω3d3y
6dx3 +

81ω4d4y
24dx4 − etc.

s = y − 4ωdy
dx

+
16ω2ddy

2dx2 − 64ω3d3y
6dx3 +

256ω4d4y
24dx4 − etc.

etc.,

by subtracting these values from the above ones P, Q, R, S etc. it will be

P − p
2

=
ωdy
dx

+
ω3d3y
6dx3 +

ω5d5y
120dx5 + etc.

Q − q
2

=
2ωdy

dx
+

8ω3d3y
6dx3 +

32ω5d5y
120dx5 + etc.

R − r
2

=
3ωdy

dx
+

27ω3d3y
6dx3 +

243ω5d5y
120dx5 + etc.

S − s
2

=
4ωdy

dx
+

64ω3d3y
6dx3 +

1024ω5d5y
120dx5 + etc.

etc.

But if these terms are added to the above ones, then, as the differentials of even
orders are missing here, the odd differentials will go out of the computation.
For, it will be

P + p
2

= y +
ω2ddy
2dx2 +

ω4d4y
24dx4 +

ω6d6y
720dx6 + etc.

Q + q
2

= y +
4ω2ddy

2dx2 +
16ω4d4y

24dx4 +
64ω6d6y
720dx6 + etc.

R + r
2

= y +
9ω2ddy

2dx2 +
81ω4d4y

24dx4 +
729ω6d6y

720dx6 + etc.

S + s
2

= y +
16ω2ddy

2dx2 +
256ω4d4y

24dx4 +
4096ω6d6y

720dx6 + etc.

etc.
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§58 Since the preceding terms can all be expressed, if they are collected into
one sum, the summatory term of the propounded series will result. Let the
first term correspond to the index x − nω and the first term itself will be

= y − nωdy
dx

+
n2ω2

2dx2 − n3ω3d3y
6dx3 +

n4ω4d4y
24dx4 + etc.

Therefore, since the term corresponding to the index x will be = y and the
number of all terms is = n + 1, the sum of all starting from the first until y, or
the summatory term will be

= (n + 1)y − ωdy
dx

(1 + 2 + 3 + · · ·+ n)

+
ω2ddy
2dx2 (1 + 22 + 32 + · · ·+ n2)

− ω3d3y
6dx3 (1 + 23 + 33 + · · ·+ n3)

+
ω4d4y
24dx4 (1 + 24 + 34 + · · ·+ n4)

− ω5d5y
120dx5 (1 + 25 + 35 + · · ·+ n5)

+ etc.

§59 Above we exhibited the sums of these single series [§ 62 of the first part];
if these are substituted here, the sum of the propounded series will be

= (n + 1)y − ωdy
dx

(
1
2

nn +
1
2

n
)

+
ω2ddy
2dx2

(
1
3

n3 +
1
2

nn +
1
6

n
)

− ω3d3y
6dx3

(
1
4

n4 +
1
2

n3 +
1
4

n2
)

+
ω4d4y
24dx4

(
1
5

n5 +
1
2

n4 +
1
3

n3 − 1
30

n
)

− ω5d5y
120dx5

(
1
6

n6 +
1
2

n5 +
5

12
n4 − 1

12
n2
)

etc.,
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where n will be given from the index of the first term which is the initial term
of the sum. If one puts ω = 1 and the index of the first term is = 1, of the
second = 2 and of the last = x such that this series is propounded

1, 2, 3, 4, · · · · · ·x
a, b, c, d, · · · · · ·y,

because of x − n = 1 and n = x − 1 the sum of this series will be

= xy − dy
dx

(
1
2

xx − 1
2

x
)

+
ddy
2dx2

(
1
3

x3 − 1
2

xx +
1
6

x
)

− d3y
6dx3

(
1
4

x4 − 1
2

x3 +
1
4

xx
)

+
d4y

24dx4

(
1
5

x5 − 1
2

x4 +
1
3

xx − 1
30

x
)

+
d5y

120dx4

(
1
6

x6 − 1
2

x5 +
5

12
x4 − 1

12
x2
)

+
d6y

720dx4

(
1
7

x7 − 1
2

x6 +
1
2

x5 − 1
6

x3 +
1
42

x
)

etc.

§60 From this expression, since the coefficients will be augmented immensely,
if x was a large number, hardly anything of use for the doctrine of series
follows; it will nevertheless be helpful to have mentioned other properties
following from these considerations. Let the general term be xn and indicate
the summatory term by S.y or S.x. Having used this notation everywhere it
will be
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1
2

xx − 1
2

x = S.x − x

1
3

x3 − 1
2

x2 +
1
6

x = S.x2 − x2

1
4

x4 − 1
2

x3 +
1
4

xx = S.x3 − x3

etc.

Therefore, from the above expression one will obtain

S.xn = xn+1 − nxn+1S.x + nxn

+
n(n − 1)

1 · 2
xn−2S.x2 − n(n − 1)

1 · 2
xn − n(n − 1)(n − 2)

1 · 2 · 3
xn−3S.x3 +

n(n − 1)(n − 2)
1 · 2 · 3

xn + etc.

But because it is

(1 − 1)n = 0 = 1 − n +
n(n − 1)

1 · 2
− n(n − 1)(n − 2)

1 · 2 · 3
+ etc.,

it will be

n − n(n − 1)
1 · 2

+
n(n − 1)(n − 2)

1 · 2 · 3
− etc. = 1

and hence, having excluded the case n = 0 in which this expression becomes
= 0, it is

S.xn = xn+1 + xn − nxn−1S.x +
n(n − 1)

1 · 2
xn−2S.x2 − n(n − 1)(n − 2)

1 · 2 · 3
xn−3S.x3

+
n(n − 1)(n − 2)(n − 3)

1 · 2 · 3 · 4
xn−4S.x4 − etc.

§61 To see both the validity and the power of this formula more clearly, let us
expand the single cases and at first let n = 1 and it will be S.x = x2 + x − S.x
and hence S.x = xx+x

2 , as it is sufficiently known. Therefore, let us put n = 2
and it will be

S.x2 = x3 + xx − 2xS.x + S.x2,

and hence

14



S.x3 =
3
2

xS.x2 − 3
2

x2S.x +
1
2

x3(x + 1);

if one puts n = 4, this expression will result

S.x4 = x5 + x4 − 4x3S.x + 6x2S.x2 − 4xS.x3 + S.x4,

whence because of the cancelled S.x4 it will be

S.x3 =
3
2

xS.x2 − x2S.x +
1
4

x3(x + 1);

if from the triple of this sum the double of the preceding sum is subtracted, it
will remain

S.x3 =
3
2

xS.x2 − 1
4

x3(x + 1).

If one puts n = 5, it will be

S.x5 = x5 + x5 − 5x4S.x + 10x3S.x2 − 10x2S.x3 + 5xS.x4 − S.x5

or

S.x5 =
5
2

xS.x4 − 5x2S.x3 + 5x3S.x2 − 5
2

x4S.x +
1
2

x5(x + 1)

and from n = 6 it follows

S.x6 = x7 + x6 − 6x5S.x + 15x4S.x2 − 20x3S.x3 + 15x2S.x4 − 6xS.x5 + S.x6

or

S.x5 =
5
2

xS.x4 − 10
3

x2S.x3 +
5
2

x3S.x2 − x4S.x +
1
6

x5(x + 1).

§62 From these we therefore conclude in general, if n = 2m + 1, that it will
be

S.x2m+1 =
2m + 1

2
xS.x2m − (2m + 1)2m

2 · 1 · 2
x2S.x2m−1

+
(2m + 1)2m(2m − 1)

2 · 1 · 2 · 3
x3S.x2m−2 − · · · − 2m + 1

2
x2mS.x +

1
2

x2m+1(x + 1).
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But if it was n = 2m + 2, since the terms S.x2m+2 cancel each other, one will
find

S.x2m+1 =
2m + 1

2
xS.x2m − (2m + 1)2m

2 · 3
x2S.x2m−1

+
(2m − 1)2m(2m + 1)

2 · 3 · 4
x3S.x2m−2 − · · · − x2mS.x +

1
2m + 2

x2m+1(x + 1).

Therefore, the sum of the odd powers can be determined from the sums of
the lower powers in two ways and from the various combinations of these
formulas infinitely many other can be formed.

§63 But the sum of the odd powers can be determined a lot easier from the
preceding ones and for this it certainly suffices to know only the sum of the
preceding even power. For, from the sums of powers exhibited above [§ 62

of the first part] it is known that the number of terms constituting the sums
is only increased in the even powers, such that the sum of the odd powers
consists of as many terms as the sum of the preceding even power. So, if the
sum of the even power x2n is

S.x2n = αx2n+1 + βx2n + γx2n−1 − δx2n−3 + εx2n−5 − etc.

(for, we saw that after the third term each second is missing and at the same
time the signs alternate), hence the sum of the following power x2n+1 will be
found, if the single terms of it are respectively multiplied by these numbers

2n + 1
2n + 2

x,
2n + 1
2n + 1

x,
2n + 1

2n
x,

2n + 1
2n − 1

x,
2n + 1
2n − 2

x etc.

not omitting the missing terms; and therefore it will be

S.x2n+1 =
2n + 1
2n + 2

αx2n+2 +
2n + 1
2n + 1

βx2n+1 +
2n + 1

2n
γx2n − 2n + 1

2n − 1
δx2n−2

+
2n + 1
2n − 4

εx2n−4 − 2n + 1
2n − 6

ζx2n−6 + etc.

Therefore, if the sum of the power x2n is known, from it the sum of the
following power x2n+1 can be formed in a convenient manner.
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§64 This investigation of the following sums is also extended to the even
powers; but since the sums of these receive a new term, this term is not found
by means of this method, nevertheless it can always be found from the nature
of the series itself, from which it is clear, if one puts x = 1, that the sum
has also to become = 1. But vice versa from a sum of certain power one will
always be able to find the sum of the preceding powers. For, if it was

S.xn = αxn+1 + βxn + γxn−1 − δxn−3 + εxn−5 − ζxn−7 + etc.,

for the preceding power it will be

S.xn−1 =
n + 1

n
αxn +

n
n

βxn−1 +
n − 1

n
γxn−2 − n − 3

n
δxn−4 + etc.

and hence one can go backwards arbitrarily far. But it is to be noted that it
always is α = 1

2 and β = 1
2 as is it already clear from the formulas given above.

§65 The attentive reader will immediately see that the sum of xn−1 results,
if the sum of the powers xn is differentiated and its differential is divided by
ndx; and it will be d.S.xn = ndx · S.xn−1, and because it is d.xn = nxn−1dx, it
will be

d.S.xn = S.nxn−1dx = S.d.xn;

from this it is understood that the differential of the sum becomes equal to the
sum of the differentials; so in general, if the general term of a certain series
was = y and S.y was its summatory term, it will also be S.dy = d.S.y, this
means: the sum of all differentials becomes equal to the differential of the
sum of the terms. The truth of this equality is easily seen from those things
we treated above on the differentiation of series. For, because it is

S.xn = xn + (x − 1)n + (x − 2)n + (x − 3)n + (x − 4)n + etc.,

it will be

d.S.xn

ndx
= xn−1 + (x − 1)n−1 + (x − 2)n−2 + (x − 3)n−1 + etc. = S.xn−1,

which proof extends to all other series.
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§66 But let us return from where we started, to the differences of functions,
on which still several things are to be remarked. Because we saw, if y was any
function of x and one puts x ± ω instead of x everywhere, that the function y
will obtain the following value

y ± ωdy
1dx

+
ω2ddy
1 · 2dx2 ± ω3d3y

1 · 2 · 3dx3 +
ω4d4y

1 · 2 · 3 · 4dx4 ± ω5d5y
1 · 2 · 3 · 4 · 5dx5 + etc.,

this expression will be valid, no matter whether for ω any constant quantity is
taken or even a variable value depending on x. For, having found the values
of dy

dx , ddy
dx2 , d3y

dx3 etc. by differentiation in the factors ω, ω2, ω3 etc. the variability
is not considered and hence it does not matter, whether ω denotes a constant
quantity or a variable quantity depending on x.

§67 Therefore, let us put that it is ω = x and in the function y x − x = 0 is
written instead of x. Therefore, if in any function of x one writes 0 instead of
x everywhere, the value of the function will be this one

y − xdy
1dx

+
x2ddy

1 · 2dx2 − x3d3

1 · 2 · 3dx3 +
x4d4y

1 · 2 · 3 · 4dx4 − etc.

Therefore, this expression always indicates the value which any function
y obtains, if in it one puts x = 0, the validity of which statement will be
illustrated by the following examples.

EXAMPLE 1

Let y = xx + ax + ab, whose value, if one puts x = 0, is in question which is of
course known to be = ab.

Because it is y = xx + ax + ab, it will be

dy
1dx

= 2x + a,
ddy

1 · 2dx2 = 1

and hence the value in question results as

= xx + ax + ab − x(2x + a) + xx · 1 = ab.
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EXAMPLE 2

Let y = x3 − 2x + 3, whose value having put x = 0 is in question, which value is
known to be = 3.

Because it is y = x3 − 2x + 3, it will be

dy
dx

= 3xx − 2,
ddy

1 · 2dx2 = 3x,
d3y

1 · 2 · 3dx3 = 1;

the value in question will be found to be

= x3 − 2x + 3 − x(3xx − 2) + xx · 3x − x3 · 1 = 3.

EXAMPLE 3

Let y = x
1−x , whose value having put x = 0 is in question, which is known to be = 0.

Because it is y = x
1−x , it will be

dy
dx

=
1

(1 − x)2 ,
ddy

1 · 2dx2 =
1

(1 − x)3 ,
d3y

1 · 2 · 3dx3 =
1

(1 − x)4 etc.

Hence, the value in question will be

=
x

1 − x
− x

(1 − x)2 +
xx

(1 − x)3 − x3

(1 − x)4 +
x4

(1 − x)5 − etc.

and therefore the value of this series is = 0. This is also plain from the fact
that this series without the first term, e.g., x

(1−x)2 − xx
(1−x)3 +

x3

(1−x)4 − etc., is
a geometric series and its sum is = x

(1−x)2+x(1−x) = x
1−x , whence the value

found will be

=
x

1 − x
− x

1 − x
= 0.

EXAMPLE 4

Let y = ex while e denotes the number whose hyperbolic logarithm is 1 and the value
of y be in question, if one puts x = 0, which value is known to be = 1.

Because it is y = ex, it will be
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dy
dx

= ex,
ddy
dx2 = ex etc.

and hence the value in question will be

= ex − ex

1
+

exxx
1 · 2

− exx3

1 · 2 · 3
+

exx4

1 · 2 · 3 · 4
− etc.

= ex
(

1 − x
1
+

xx
1 · 2

− x3

1 · 2 · 3
+

x4

1 · 2 · 3 · 4
− etc.

)
.

But above we saw that the series

1 − x
1
+

xx
1 · 2

− x3

1 · 2 · 3
+ etc.

expresses the value e−x; therefore, the value in question will be ex · e−x = ex

ex =
1, of course.

EXAMPLE 5

Let y = sin x and having put x = 0 it is obvious that it will be y = 0, what also the
general formula will indicate.

For, if it is y = sin x, it will be

dy
dx

= cos x,
ddy
dx2 = − sin x,

d3y
dx3 = − cos x,

d4y
dx4 = sin x etc.

Having put x = 0 the value of y will be this one

sin x − x
1

cos x − xx
1 · 2

sin x +
x3

1 · 2 · 3
cos x +

x4

1 · 2 · 3 · 4
sin x − etc.

which is

= sin x
(

1 − xx
1 · 2

+
x4

1 · 2 · 3 · 4
− x6

1 · 2 · 3 · · · 6
+ etc.

)
− cos x

(
x
1
− x3

1 · 2 · 3
+

x5

1 · 2 · 3 · 4 · 5
− x7

1 · 2 · 3 · · · 7
+ etc.

)
But the upper of these series expresses cos x, the lower expresses sin x, whence
the value in question will be

= sin x cos x − cos x · sin x = 0.

20



§68 Hence, we therefore vice versa conclude, if y was a function of x of such
a kind that it vanishes having put x = 0, that then it will be

y − xdy
1dx

+
xxddy

1 · 2dx2 − x3d3y
1 · 2 · 3dx3 +

x4d4y
1 · 2 · 3 · 4dx4 − etc. = 0.

Hence, this is the general equation of completely all functions of x, which, if
x = 0, at the same time vanish themselves. And therefore this equation is of
such a nature, that, no matter which function of x, as long as it vanishes if x
vanishes, is substituted for y, it is always satisfied. But if y was a function of
such a kind of x which having put x = 0 obtains a given value = A, then it
will be

= y − xdy
1dx

+
x2ddy

1 · 2dx2 − x3d3y
1 · 2 · 3dx3 +

x4d4y
1 · 2 · 3 · 4dx4 − etc. = A,

which equations contains all functions of x which having put x = 0 go over
into A.

§69 If one writes 2x or x + x instead of x, any function of x, which we want
to denote by y, will obtain this value

y +
xdy
1dx

+
x2ddy

1 · 2dx2 +
x3d3y

1 · 2 · 3dx3 +
x4d4y

1 · 2 · 3 · 4dx4 + etc.

And if we write nx instead of x, this means x + (n − 1)x, the function y will
obtain the following value

y +
(n − 1)xdy

1dx
+

(n − 1)2xxddy
1 · 2dx2 +

(n − 1)3x3d3y
1 · 2 · 3dx3 + etc.

but if we in general write t for x, because of t = x + t − x any function y of x
will be transformed into the following form

y +
(t − x)dy

1dx
+

(t − x)2ddy
1 · 2dx2 +

(t − x)3d3y
1 · 2 · 3dx3 + etc.

Therefore, if v was such a function of t as y is of x, since v results from y by
putting t instead of x, it will be

v = y +
(t − x)dy

1dx
+

(t − x)2ddy
1 · 2dx2 +

(t − x)3d3y
1 · 2 · 3dx3 + etc.,

the validity of which formula can be checked in any arbitrary example.
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EXAMPLE

For, let y = xx − x; it is obvious that having put t instead of x it will be v = tt − t,
which same equation the found expression will also reveal.

For, because of y = xx − x it will be

dy
dx

= 2x − 1 and
ddy
2dx2 = 1;

hence, it will be

v = xx − x + (t − x)(2x − 1) + (t − x)2

= xx − x + 2tx − 2xx − t + x + tt − 2tx + xx = tt − t.

Therefore, if y was a function of such a kind of x, which having put x = a
goes over into A, because of t = a and v = A it will be

A = y +
(a − x)dy

1dx
+

(a − x)2ddy
1 · 2dx2 +

(a − x)3d3y
1 · 2 · 3dx3 + etc.

and hence all functions of x, which having put x = a go over into A, satisfy
this equation.
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